40 research outputs found

    Evaluation of Upper Extremity Movement Characteristics during Standardized Pediatric Functional Assessment with a Kinect®-based Markerless Motion Analysis System

    Get PDF
    A recently developed and evaluated upper extremity (UE) markerless motion analysis system based on the Microsoft® Kinect® has potential for improving functional assessment of patients with hemiplegic cerebral palsy. 12 typically-developing adolescents ages 12-17 were evaluated using both the Kinect-based system and the Shriners Hospitals for Children Upper Extremity Evaluation (SHUEE), a validated measure of UE motion. The study established population means of UE kinematic parameters for each activity. Statistical correlation analysis was used to identify key kinematic metrics used to develop automatic scoring algorithms. The Kinect motion analysis platform is technically sound and can be applied to standardized task-based UE evaluation while providing enhanced sensitivity in clinical analysis and automation through scoring algorithms

    Quantitative Assessment of Children with Osteogenesis Imperfecta

    Get PDF
    Assessments of children with Osteogenesis Imperfecta (OI) are typically limited to a physical exam and observations from a clinician during a hospital visit. Often quantitative information such as bone mineral density and outcome questionnaires is obtained, but with the increasing prevalence of motion analysis and other performance type laboratories, there are many other tools available, which could be beneficial to this patient population. These laboratories can provide date supplementary to morphologic and radiographic data that is helpful in tracking changes in the patient’s functional abilities, recover from fracture, and treatment outcomes. This chapter will cover some useful evaluation methods for children with the most commonly seen types of OI and provide some examples of their test results

    Upper Extremity Biomechanical Model for Evaluation of Pediatric Joint Demands during Wheelchair Mobility

    Get PDF
    Current methods for evaluating upper extremity (UE) dynamics during pediatric wheelchair use are limited. We propose a new model to characterize UE joint kinematics and kinetics during pediatric wheelchair mobility. The bilateral model is comprised of the thorax, clavicle, scapula, upper arm, forearm, and hand segments. The modeled joints include: sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist. The model is complete and is currently undergoing pilot studies for clinical application. Results may provide considerable quantitative insight into pediatric UE joint dynamics to improve wheelchair prescription, training and long term care of children with orthopaedic disabilities

    Upper Extremity Biomechanics of Children with Spinal Cord Injury during Wheelchair Mobility

    Get PDF
    While much work is being done evaluating the upper extremity joint dynamics of adult manual wheelchair propulsion, limited work has examined the pediatric population of manual wheelchair users. Our group used a custom pediatric biomechanical model to characterize the upper extremity joint dynamics of 12 children and adolescents with spinal cord injury (SCI) during wheelchair propulsion. Results show that loading appears to agree with that of adult manual wheelchair users, with the highest loading primarily seen at the glenohumeral joint. This is concerning due to the increased time of wheelchair use in the pediatric population and the impact of this loading during developmental years. This research may assist clinicians with improved mobility assessment methods, wheelchair prescription, training, and long-term care of children with orthopaedic disabilities

    Segmental Kinematic Analysis of Planovalgus Feet during Walking in Children with Cerebral Palsy

    Get PDF
    Pes planovalgus (flatfoot) is a common deformity among children with cerebral palsy. The Milwaukee Foot Model (MFM), a multi-segmental kinematic foot model, which uses radiography to align the underlying bony anatomy with reflective surface markers, was used to evaluate 20 pediatric participants (30 feet) with planovalgus secondary to cerebral palsy prior to surgery. Three-dimensional kinematics of the tibia, hindfoot, forefoot, and hallux segments are reported and compared to an age-matched control set of typically-developing children. Most results were consistent with known characteristics of the deformity and showed decreased plantar flexion of the forefoot relative to hindfoot, increased forefoot abduction, and decreased ranges of motion during push-off in the planovalgus group. Interestingly, while forefoot characteristics were uniformly distributed in a common direction in the transverse plane, there was marked variability of forefoot and hindfoot coronal plane and hindfoot transverse plane positioning. The key finding of these data was the radiographic indexing of the MFM was able to show flat feet in cerebral palsy do not always demonstrate more hindfoot eversion than the typically-developing hindfoot. The coronal plane kinematics of the hindfoot show cases planovalgus feet with the hindfoot in inversion, eversion, and neutral. Along with other metrics, the MFM can be a valuable tool for monitoring kinematic deformity, facilitating clinical decision making, and providing a quantitative analysis of surgical effects on the planovalgus foot

    Kinematic Foot Types in Youth with Equinovarus Secondary to Hemiplegia

    Get PDF
    Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s)
    corecore